Out of the fireSecrets of Earth’s geological past lie within a chain of ancient volcanoes called the Cosgrove hotspot track that stretches from Cape Hillsborough in Queensland  south to the Victorian coast._________
STORY BY HANNAH JAMES PHOTOGRAPHY BY DON FUCHS
Wolfang Peak, in Peak Range NP, QLD,
juts sharply out of the surrounding landscape
in unmistakably volcanic fashion.
Much of the physical evidence of the
track, such as towering volcanic plugs,
occurs on private pastoral land.
     THE CORAL SEA is serene today. Palm trees cast flickering shadows over a golden beach as a family makes its way across a tidal causeway towards a rocky island, fishing rods and buckets in hand. Behind them, on the mainland, hills clad in hoop pine forests roll towards the shore, their green expanse interspersed with occasional bare, jutting outcrops. On the island’s ocean side, sunlight glints off crystals embedded in black and red rocks.
     This is Wedge Island, off Cape Hillsborough in Queensland, and the bay here is evidence of an ancient volcano that formed some 34 million years ago. It marks the northernmost point of the Cosgrove hotspot track, a chain of extinct volcanoes that extends southwards across eastern Australia through Queensland, New South Wales and Victoria, to the coast near Melbourne, and is now theorised to be located under Bass Strait near the northern Tasmanian coast. At more than 2000km, it is the world’s longest terrestrial line of intraplate volcanoes.
     These types of volcanoes are unusual because they don’t occur at tectonic plate boundaries, where most volcanoes form. Instead, they occur within tectonic plates, forming above hotspots in the Earth’s mantle (see page 60). Volcano chains such as the Cosgrove hotspot track form when a tectonic plate moves over a hotspot. The track has puzzled geologists since it was discovered in the 1970s. It formed as the Australian crustal plate drifted north-northeast over a stationary mantle plume hotspot located some 3000km below the Earth’s surface. Recently, an international team led by Australian scientists has been able to explain why the volcanoes in this chain vary so dramatically in size and composition, and why they occur in certain places but not others.
     THE ONLY CONSTANT in any landscape is change. Relentless transformation on a gigantically slow scale is happening around us all the time. Over millennia, giant boulders can wear down to soil, and rocks that were once deeply buried underground can be uplifted to the surface. But with volcanoes, the usual rules don’t apply. Consider Wedge Island, for example. Its oldest rocks are composed of limestone dating back 65–55 million years ago. About 34mya, fiery lava erupted here, enveloping the Earth and leaving behind thick, black, bubbly flows of basalt. Metres of white ash and boulders rained down on top, and thicker, stickier lava, or rhyolite, oozed across what would become Wedge Island. This all happened with dizzying speed, geologically speaking. But once the volcano’s final belches of ash and smoke died away, things slowed. Millennia ticked by with nothing but wind, rain, ice, and thaw to differentiate them. Vegetation grew, retreated, then grew again.

     Crystals developed in the basalt bubbles. They formed geodes (spherical, nodule-like rocks with hollow centres coated in crystals) and thunder eggs (round, nodule-like rocks with solid or near-solid centres, usually composed of chalcedony, agate or quartz). The rhyolite weathered and eroded and the layers tip-tilted to form cliffs, creating the landscape we see today.

     “I’M THE THIRD generation to [farm] this land,” says Kim Smith, who is washing down her horse trailer near her home tucked beneath the towering spire of nearby Pinnacle Peak. The peak is a plug formed by the Cape Hillsborough volcano, and Kim’s horses graze on its green lower slopes. “My grandfather bought this land in 1952; he started with dairy and small crops and then went to sugarcane,” says Kim, who now uses the land
The track has puzzled
geologists since it was
discovered in the 1970s.
___
The Dragon’s Eye, in Cape Hillsborough NP, is one of many  dramatic rock formations created by erosion along the volcanic  Cape Hillsborough coast.
The privately owned Wedge Island, its causeway hidden underwater here by the high tide, is part of a 34 million-year-old volcano. Many of the glittering geodes that stud Wedge Island’s volcanic rocks have been pilfered by rockhunters but this is one that survives intact and in place.Mount Pollux, in Peak Range NP, QLD,
shows unusual horizontal jointing that
looks like steps on its flanks.
Not only is it Earth’s longest continental track, it used to be the most mysterious.     for agisting horses. “We have really good soil because of the volcano and grow great grass. Everywhere else dries off but this place stays green. I get my door beaten down [for] agistment.”
     Kim’s family has long loved the volcano that looms over the land for more than its agricultural benefits. “You know how the volcanic rock breaks geometrically?” she asks. “My grandmother had a garden edged with those stones.” That love has been passed down through the generations. “My daughter is eight and wants to be a geologist,” Kim adds. “She loves going to school and saying she owns a volcano!”
     The volcanoes along the Cosgrove hotspot track are fascinating to Earth scientists too. “Plate tectonics theory predicts that most earthquakes and volcanoes will occur at plate boundaries,” says Associate Professor Rhodri Davies of the Australian National University’s Research School of Earth Sciences. “But Australia doesn’t sit on a plate boundary. So this is an intraplate volcanic province, and one of the largest continental examples on Earth. [Evidence of volcanic activity] can’t be explained by standard plate tectonic processes – there has to be another mechanism at play.” In this instance, that mechanism is a mantle plume.
     “A mantle plume is a hot, buoyant volume of rock that rises all the way from Earth’s core to the surface,” Rhodri explains. “That may be hard to visualise, so I always use the example of a lava lamp where you heat the base. Think of that as Earth’s core, which is significantly hotter than the overlying mantle. It heats up some mantle rock that becomes buoyant enough to rise towards Earth’s surface. Almost 3000km later, it hits the top of the mantle – the base of the lithosphere. Like a lava lamp, you heat the bottom and spawn this buoyant lava that rises and hits the top. That’s how mantle plumes give rise to intraplate volcanoes.”
     Mantle plumes are stationary, but the Australian continent moves northwards at about 7cm a year. So, over millions of years as the continent moved over the plume, volcanoes erupted in turn along the line now known as the Cosgrove hotspot track. The plume first hit the Australian continent at Cape Hillsborough about 34mya, and, as the track progressed southwards, more volcanoes formed. Those at the track’s southern end are millions of years younger than those in the north.
Keen rockhound Kevin Smalley carefully examines a geode he found near his Cape Hillsborough home. Many of his finds (below and bottom) show the crystallisation (bottom right) typical of basaltic volcanic rock.      “It’s the longest continental track on Earth,” Rhodri says. “The Hawaiian-Emperor track in the Pacific Ocean, for example, is thousands of kilometres long and records volcanism for around 80 million years [but is in the ocean]. The other example on a continent would be Yellowstone, in the USA; that track is about 700km long and records volcanism for about 17 million years. But the Cosgrove track records volcanism for about 35 million years and is just over 2000km long.”
      Not only is it the Earth’s longest continental track, it used to be – until recently – the most mysterious. Rhodri was the lead researcher on a paper published in the scientific journal Nature, in 2015, that solved the track’s most baffling conundrum: the volcanoes it created vary dramatically in size and composition. Some are enormous, some are almost unnoticeable, and there’s even a 700kmlong gap where there are no volcanoes at all.
      Rhodri and his colleagues determined that the explanation for this was to do with the thickness of the lithosphere, the Earth’s rigid outermost layer. “Australia contains some of the largest lithospheric thickness variations on Earth,” he explains. The team noticed that where the track enters northern NSW, a mineral called leucitite was present in the rocks. They deduced that leucitite appeared where the lithosphere was only just thin enough for magma to erupt through it.
      “The larger volcanoes occur in regions where the lithosphere is thin,” Rhodri explains, although ‘thin’ is a relative term because here it means less than 130km deep. “And our hypothesis for why that occurs is that the underlying plume is able to rise to shallow depths, melt extensively, produce a lot of magma and a large volcano. The leucitites occur exclusively in regions of intermediate lithospheric thickness. So there we argue that the plume rises to depths where it can only melt to a small degree, and those melts are such low volume that they can only build small, low-volume eruptions.” Where the lithosphere is thicker than 130km, there are no volcanoes at all.

     VISIT KEVIN SMALLEY at his home near Smalleys Beach (named after his family, who arrived in 1925), at Cape Hillsborough, and you’ll see the results of a lifetime of rock-collecting piled up in the yard on trestle tables, in crates, on windowsills and around the front door.
     Kevin is a rockhound. “Ever since I was old enough to crawl on hands and knees I’ve been interested in rocks,” he says. “I’m all self-taught – I’ve never worked in the field.” He’s passionate about the beauty and rarity of the local rocks, and they all come courtesy of the volcano. He displays rock after rock, plenty of which he literally found in his own backyard.
READ MORE LIKE THIS